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A THEORY OF SPACE-PROBE ENTRY UNDER CONDITIONS 
OF EHGR MASS LOSS 

BY FREDERICK C. GRANT 

SUMMARY 

A theory of velocity limitation is  developed m the 
basis of a simple analytical model of a returning 
space probe. 272s lirfiiting velocity is the lowest 
atmospheric entry speed for which the heat-protection 
material of the probe i s  entirely consumed. The 
geometry treated i s  a family of slender blunted cone8 
mooing in the direction of the axis. %face of the 
cone is assumed to be continuously caporized by the 
flow. The entnj speed i s  presumed to be so high 
€hat a large fraction (or all) of the vehicle volume is  
consumed in the entry. The entry speed i s  also 
high enough for the dominant mode of heat transfer 
to the vehicle to be through radiation from the hot 
gas cap at the nose. In the regime of radiation 
dominance, a second-order nonlinear differential 
equation is  found which describes the geometric and 
dynamic history during atmospheric entry. B y  
means of solutions of the basic size-altitude equation 
the velocity limit i s  traced out. 

With a limiting form of the heat-input function, 
explicit formulas for the limiting geelocity of the 
family of truncated cones are developed. The limit- 
i n g  velocity is found to be independent of the size of 
the probe but dependent on  the shape. Pointed 
cones yield the highest limiting velocities for the cluss 
of probes considered. Eowecer, jilat-faced c?jlinders 
yield values nearly as high. The proportZ‘bns of the 
cylinders do not uflect the limiting celocity, and 
therefore l o n g  rods and thin wafers hace the same 
values. Only the altitude of the high-mass-loss 
region shi9.s with the probe size or with the cjlinder 
proportions. 

INTRODUCTION 

Analyses of atmospheric entry in the satellite 
and escape speed ranges have not emphasized 

mass losses since the mass fraction devoted to heat 
protection is typically quite small. The case of 
low-mass-loss probe entry in the meteoric speed 
range mas ou thed  in reference 1. At SI.&- 

ciently high speeds in the meteoric speed range, 
however, the mass loss cannot be ignored for 
reasonably sized vehicles. 

The basic contrasts between meteor entry and 
probe entry lie in the sizes, materiak, and shapes. 
rueteorites are composed of iron stone, reach 
enormous sizes, and seem t o  have irre,dar, blunt 
shapes. Probes, on the other hand, cannot 
weigh more than a few thousands of pounds, and 
the materials and shapes can be chosen as de- 
sired. For successful probes a definite fraction of 
the mass, the scientific payload, must survive the 
entry. Of course, in a sense, a meteorite is 
intrinsically a scient.Sc payload. 

The anticipated speeds of probe entry are well 
beyond the capability of shock tubes. Shock 
tubes are unlikely to achieve speeds much higher 
than the present Limit of about 40,000 feet per 
second. Information on entry a t  higher speeds 
can, at present, be clirectIy obtained o d y  by 
observation of meteors. Recourse must be made 
to judicious extrapolation and to anaIsticaI 
methods for investigation of space-probe entry. 

The problem of naturalmeteor mechanics has 
been successfully treated, in the main without 
detailed consideration of the heat-input function. 
(See ref. 2, for example.) &though shock-tube 
experiments and theoretical analsses have pro- 
duced realistic heat-input functions for simple 
shapes and it is nom possible to include realistic 
heat-input functions in problems of entry me- 
chanics, the range of applicability of the results 
for high-mass-loss trajectories is not h o m .  

I 
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model a t  constant acceleration due to gravity. 
Such a model has an exponential variation of 
density with altitude which may be expressed as 

d p  dh 
P h, 

--__ - 

The parameter h, is called the scale height of the 
atmosphere and may be defined as the altitude 
change for which the density changes by the 
factor e, the base of natural logarithms. For the 
simplified atmospheric-entry model under dis- 
cussion, a generalized scale height h,' may be 
defined as the distance along the flight path in 
which the density changes by the factor e .  The 
two parameters are related simply by 

(1b) 

where y is the angle of the flight path with respect 
to the horizontal. 

The substitution of the density for time as the 
independent variable will be made as a matter of 
convenience. By combining the relations (la) 
and (1b) the relation between t and p is found as 

h,' (sin 7 )  = h, 

The equation of motion, if the vaporized probe 
material is assumed to leave with zero velocity 
with respect to the probe, is 

( 1 4  - tn U=- PDApU' 

Equation (Id) becomes, after substitution of 
equation (IC), 

(le) 

. 1  
2 '  

HEATING EQUATION 

The differential heat input to the probe material 
will have the form 

d QK wAWA,dx (2a) 

where dx is the depth of vaporization over an 
area A,. The same differential heat input in 
terms of flow variables will be assumed to be 
expressible in the form 

d&K p'U'Aggl(X)dt (2b) 

where g l (X)  is a function of the nondimensional 
probe size X. The functional form of g1 depends 
on the analytical model. Combination of rela- 
tions (IC), @a), and (2b) yields the form 

In the present analysis the shrinkage equation will 
always be a special case of equation (2c). 

SIZE-ALTITUDE EQUATION 

The analysis takes a compact form if equations 
(Ig) and (2c) are combined. By differentiation 
of equation (2c) and substitution of equation (Ig) 
the following second-order size-altitude equation 
is found, which is the basic equation of the present 
analysis : 

An advantage of equation (3a) is that it is inde- 
pendent of the velocity, which appears explicitly 
only when fixing boundary values of the slope by 
the condition 

ma where 6= ~ is the so-called ballistic parameter. 

Depending on the geometry chosen, the coefficient 
of U in the right inember of equation (le) is an, 
as yet, unspecified function of the nondimensional 
size X of the probe. This functional relationship 
will be denoted as 

CDA 

so that the equation of motion has the form 

- E=.f (X)U 
dp 

(3b) 

It is, for some purposes, more convenient to 
write equations (3a) and (3b) in terms of the 
variable w=log, p which is linearly related to the 
altitude in an isothermal atmosphere a t  constant 
up. This transformation yields 
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Exaniination of the basic equation (3c) indicates 
some general properties of the solutions which lead 
to scaling laws with various parameters for 
quantities of interest. For example, for param- 
eters which appear as factors of g(X), but do 
not appear inf(X), variation of these factors with 
no change in the product produces no change 
in the integral curve. A more general transfor- 
mation is the change of the integral curves under 
the variation of any parameter z which appears as 
a factor ofJ(X). If we imagine an eleinent of arc 
of an integral curve of equation (3c) to be trans- 
lated in w by an amount u so that 

W ' = W + U  (34 

clx 
dw the coefficient of the linear term in - of equation 

(3c) undergoes the change 

z e w + z ' e w ' =  z ' e n e w  (30 

where z+z' in the translation. If we require 
of z' that 

z= z'er (3g) 

then the --;i term of differential equation (3c) is 

unchanged for the translated element. Thus any 
integral curve, when translated, is a solution for 
a different value of z. The functional dependence 
of certain quantities of interest follows directly 
from this invariance of the integral curves under 
a translation u plus an associated change of 2. 
Written in a form different froni equation (3g), 
the proper association is 

cl2 x 
dw 

pz= Constan t (3h) 

The transforniation described by equations (3g) 
or (3h) will be called a p-z  shift. 

The character of the integral curves of the size- 
altitude equation (3c) for physically interesting 
cases is indicated in figure 1. Two semi-infinite 
regions of nearly constant nondimensional size x 
are separated by a region of rapid change, the 
high-mass-loss region. In  this narrow region 
occurs the heating pulse, the acceleration pulse, 

and the size-change (-E) pulse which peaks a t  

the inflection point. The acceleration peak 
follows the inflection point. The limiting velocity 
is defined in terms of the limiting size on the right, 

x 

A,-- 

* 
w 

High loss 

FIGURE 1 .-Sketch of integral curve of size-altitude 
equation. 

A,+. The velocity U,- (the value of U a t  
W = - C O >  for which A,+ equals 0 is defined as the 
limiting velocity U2. For higher velocity a t  
W =  --co the vehicle will burn up a t  finite altitudes 
(unless the payload vanishes, which case, cor- 
responding to meteorlike bodies, will be discussed 
subsequently). 

Although the size-altitude equation can be 
regarded as a geometric relation, the terms have 
dynamic significance. The only teriii unequiv- 
ocally favorable to probe survival is that with 

f ( x )  as coefficient, corresponding to loss of velocity 
and niass during entry. High values of f ( x )  are 
desirable, or alternatively, small values of 6,- are 
desirable. More precisely, as will be seen later, 
it is a high mean value of 6-' that is desirable. 

ANALYTICAL MODEL 

I n  view of the facts that high radiation inten- 
sities are associated with the large enthalpy 
changes in normal shock waves and that radiative 
heat transfer is increasingly dominant a t  space- 
probe (meteoric) speeds, i t  seems desirable that 
the surfaces of space probes should have small 
fractions of the surface area exposed to strong 
shock waves. This suggests that the basic 
shape of space probes, unlike that of meteors, 
should be slender so that strong shock waves 
can exist only a t  the foremost parts. A slender 
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blunted cone appears to be a possibility since the 
area of the blunted nose will increase with mass 
loss and the drag will thus increase at  the lower 
velocities for which radiation intensity is lessened. 
Detailed analysis will show whether these simple 
considerations are justified. 

Geometry.-The axisymmetric geometry is indi- 
cated in figure 2. The slope of the flanks of the 
cone with respect to the axis is so small that the 
heat absorbed by the flanks can be neglected 
in comparison with that entering the face. As 
the face recedes it is presumed to maintain itself 
as a plane perpendicular to the flow. The pay- 
load is idealized as a point mass rnp with the 
entire volume of the vehicle devoted to heat- 
protection material. The heat-protection ma- 
terial is assumed to have a constant heat of 
sublimation A W. 
~ 

The weight of the probe is found to be 

_/-- il::::rllllll_ljl 
[----I 

=A - l  
L .- 

It I 
FIGURE 2.-Sketch of truncated cone. 

Ballistic function f ( X )  .-For the flat-faced cone 
in Newtonian flow the quantity CDA is found to be 

1-1 
Y 

where V is the probe volume, w is the weight density, and mp is the payload 
f ( X )  thus becomes 

-- ughs ugh, 1 f( A) =-=3 - 
26 WL --- 1 I.L ( l - ~ ~ - ) ~ - ( l - A ) ~  1+(.$)? 

1-p 1-p 

so that 

where b=% is the payload fraction and A,- is 
mm- 

the initial nondimensional size. 
Heating function g(A).-The stagnation-point 

heating rates on a blunt body have the variations 

(Convective) (Sa) 

ysi. r=Pp'U"x (Radiative) (5b) 

1 
psi, c = a p m u n  - & 

where x is a characteristic length of the body. 
(See, for example, refs. 4 and 5.) The values of the 
exponents indicated by references 4 and 5 are 

If heat inputs of the types 

(4b) 

mass. The function 

indicated in relations 
(sa) and (5b) are considered to  be operative, the 
rate of change of the nondiinensional length A is 
given by 

Equation (5d) assumes that all the heat input is 
effective in the sublimation process. In  other 
words, conduction is neglected. When the rela- 
tions (5a) and (5b) are introduced into (5d), the 
result is 
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where the characteristic length x is the face 
diameter. 

The rapid rise of the radiative term with velocity 
implies that for sufficiently high speeds the inte- 
grated heat input of the radiative term will domi- 
nate the input froin the convective component. 
For sufficiently low speeds the contribution of the 
convective term will dominate. The case to be 
considered is that in which the contribution of the 
radiative term is dominant. Suppression of the 
convective term of equation (5e) yields the result 

where 

so that equation (3a) becomes 

d2X - + [ (8- 1 )  e w f ( X )  - r ]  dX - +- p ) 2 = 0  (5h) dw2 dw 1--X dw 

Numerical integrations of equation (5h) using the 
results of reference 5 (r=2, s=14) have shown 
that with steep entry and high mass loss, for 
practical probe sizes, the radiative heat inputs 
indicated by the radiative term of equation (5e) 
exceed the kinetic energy available in the flow 
except at the beginning and at the end of the 
trajectory. For completeness, however, the tra- 
jectory properties corresponding to equation (511) 
are indicated in the appendix. 

A physically acceptable radiative heat f lus  
cannot exceed the flus of kinetic energy onto the 
face of the probe. This flux is 

1 
3PU3 

per unit area. 
flux be written as 

Let the limiting radiative heat. 

P -_ “ - T J  U3A, 
d t  

An upper bound to the radiant heat f lus  is found 
if it is assumed, in coordinates moving with the 
probe, that all the incident energy flux is con- 
verted into photons, half of which enter the body 
and half of which escape. These assumptions 
require that 

1 
(5j) 7 5 5  

and therefore the radiative heat input cannot 
exceed half the kinetic-energy flux. Because of 
the small range of validity of equation (5b) for 
the high-mass-loss trajectories to be considered , 
the heat-input function (5i) will be adopted. 
On comparing formula (59 with (2b) the basic 
equation (3a) is seen to take the simple forni 

with 

where 

or, alternatively, 

G+[2e”f(X)- l ]  - dX =o 
d W 2  d w  

with 

Limiting velocity.-For the separable equation 
(5k) a first integral may be obtained by quadrature 
as 

e+2 dP S f(X)dX=Constant @a) 

and a second integral by quadratare as 

If by definition 

(6c) 

the first integration constant is found in terms of 
entry conditions as 

Constant =F(X,-) - K’ U t  - (6d) 

The limit,ing velocity is found directly as the 
dX value of 77,- corresponding to -=0 a t  X=O: 
d p  

On a p - z  shift it is found that the limiting velocity 
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is independent of size L, weight density w, m d  
effective scale height hS'. I n  fwA, the only 
indicated clependerice is the following: 

blogU1 1 
AW'Z blog ~ 

7)  

Dynamic variables.-It is convenient to express 
the deceleration G and velocity U in ternis of the 
solutions X(p). For the velocity we find 

:md for t.he tlinicnsionless accdertition 

The peak acceleration occurs on t.he condition 

Differentiating the right nieniber of equation 
(7b) with respect to p and setting the derivative 
equal to zero gives, a t  the peak G condition, 

Relation (7d) is a generalization of that of the 
wndysis of reference 6 wherein 2 p L f ( X )  was found 
to be 1 a t  peak G for the case of constant shape 
and size. 

Truncated cones. --Only the case of limiting 
velocity will be considered; tlierrforc the intc, )vra- 
tion constant of equtition (6:i) is zero when 

- __ 
F(X) is ilscd for the integral on the left-hwnd side. A closed form of the Iiinction F(X) call be ob- 
tained for truncated cones in terms of elcnientary functions, but the integral of equation (Gb) leads 
to tratiscendentnl functions. The first int,egral is 

* , = ( & ) L O  
1 

1-1 
b= - [ i - p ( i - x ~ - ) 3 j a  

and for limiting velocity 

To masiniize U,y the value of F(X) must be as 
large tis possible, which suggests that the integra- 
tion off(X) over A, to which F(X) is proportional, 
should extend over as liwge a rmge as possible. 
However, the effect of the indicat.ed extension of 
the range of integration is offset by a decrease in 
the value of the integrand a t  every A. Calcula- 
tions have shown that the effect of moving the 
integration limit is the larger. Therefore A,- 
should be unity and the lower limit of the bracket 
in relation (8d) should be zero. Initially pointed 
cones are thus indicated as having the highest 
limiting velocities. As a+O, the limiting velocity 

686-823- 8-2 

indicated by relation (8d) approaches the value 
which, as shown in the nest section, corresponds 
to a cylinder. At the other extreme (a+m), 
corresponding to w shallow cone of zero length, 
the limiting velocity approaches t.he form 

This result must be given a cautious physical 
On the present model the drag interpretation. 
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of the flanks is, in a sense, free, since no loss of 
material froin the flanks is allowed. The relation 
(8e), corresponding to the limiting shallow cone, 
puts the highest possible drag in the place where 
it costs nothing. This consideration also applies, 
in a weaker form, to t,he earlier result which indi- 
cated that the pointed cone yields the highest, 
limiting velocity. Only for flank slopes so shallow 
that the flank heat input is truly small compared 
with the face input can the present model be con- 
sidered valid. The infinitely shallow cone ob- 
viously does not meet this requirement. A 
quantitative estimate of the flank input, is given 
in the appendix. 

For the second integral (eq. (6b)), with p=O 
at X=X,-, 

Cylinders.-The case of a cylinder corresponds 
to that of a truncat,ed cone for which DIL-4 
and L+=. If 1; is redefined as the original 
cylinder length (A,- is thus always unit..\.), 

CDA=T D2 2 

The function F(X) is 

2a0h,' 
F ( X ) = w j J  log, 

and the limiting velocity is given by 

Aw 1 
rl P 

U22=4a0 - log, - 

The absence of D / L  (now the diameter-length 
ratio) indicat,es that there are no preferred pro- 
portions. Thus wafers and rods have the same 
limiting velocities. (Since CDA has a large value 
at  every value of X, the cylinder yields high liniit- 
ing velocities.) 

Sphere.-The case of the homogeneous shrinking 
sphere was treated in reference 7. If this spherical 
configuration is formally converted into a space 

probe by addition of a point mass at the center 
of the sphere the function jh) becomes 

where X=rIR and X = r ,  _. An integration yields 

and the limiting velocity is 

(10cl) 

The limiting velocity for the modified solution of 
reference 7 is thus 3 2-' or 0.707 times the limiting 
velocity for the flat-faced cylinders. Again, as 
in the case of the cones and cylinders, there is no  
size dependency. 

NUMERICAL RESULTS 

For the cones the value D/L=O.3 has been 
adopted in the calculations. This value yields t1 

shape that, is slender enough to have little convec- 
tion to the flanks (see appendix). The value 
h,'=25,200 feet, which corresponds to vertical 
entry into the atmosphere, has been used through- 
out. The forin'ulas of the analysis indicate the 
variation with h,' of properties of interest. For 
example, the air loading G at each value of x 
varies inversely with hs'. 

The limiting velocities indicated by the analysis 
for the limiting heat function are indicated in 
figure 3. Certain cases may be cited as examples. 
With a cylinder made of a material such as graphite 
( A ~ ' - 1 5 . 0 0 0  Btu/lb). a payload fraction p of 
F1=0.368, and q=1/2, the indicated limiting 
velocity is about 55,000 feet per second (fig. 3(c)), 
which is about the launch speed for escape from 
the solar system. For the q value of 1/4, the limit- 
ing value jumps to 78,000 feet per second, some 40 
percent higher than launch speed for solar-system 
escape, and well beyond the 50,000- to 60,000- 
feet-per-second range suggested in reference 2. 
The results of reference 8 indicate smaller mean 
values of 7 than 114 for the high densities and 
speeds experienced in the region of high mass loss. 
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The unbounded increase of limiting velocity with 
vanishing payload implies that there is, in 
principle, no limit to the payload size or entry 
speeds possible. The payload fraction need only 
be decreased to that corresponding to the desired 
entry velocity and a large enough probe con- 
structed to realize the assumed fractional value. 
Aside from the fact that there are practical limits 
on the size of probe which may be launched, 
there is, more fundamentally, the limited thick- 
ness of the earth’s atmosphere to be considered. 

With increasing probe size the position of the 
high-mass-loss region moves to lower altitudes. 
It should be recalled, however, that the air loads 
and limiting velocity do not change with size 
(eqs. (Be) and (6f)). A convenient reference 
point near the end of tlie high-mass-loss region is 
the peak G point. For some size of probe the 
peak G point will o c ~ u r  a t  sea-level density 
(~=-6 .03  in English units). For sizes larger 
than those which put the peak G point at sea 
level, survival is clearly impossible. In figure 4 
the size limitation imposed by the finite depth of 
the atmosphere is inclicatecl in terms of the locn- 
tion of the peak G point as a function of size and 
payload fraction with w=140 lb/cu ft. For 
weight densities other than 140 lb/cu ft, figure 4 
applies if the actual value of L is multiplied by 
w/140. Thc characteristic length used for the 
shrinking sphere is the diameter 21?. 

If the evidence of figure 4 is regarded as suffi- 
cient, i t  might be said that a t  p = l / 2  a limiting 
size of L=20 feet exists for the pointed cone and 
the cylinder, and a somewhat smaller value for 
the shrinking sphere (fig. 4(d)). However, the 
width of the high-mass-loss region must be con- 
sidered. This width varies with probe shape so 
that a separate limiting size is indicated for each 
probe shape. The discussion will be limited to t!ie 
case of p = 1 / 2 ,  which is the least favorable of tlie 
cases presented in t he sense that liigbr payload 
fractions lead to snialler limiting probe sizes. 

The width of the high-inass-loss region is in- 
dicated in figure 5 in terms of the G pulse ex- 
perienced by the various probes. The shape of 
the G pulse has a characteristic form independent 
of the size L and the probe material as represented 
by w and All’, but dependent on the probe shape 
represented by f(h). The pulse shapes are seen 
to vary from narrow, in the case of the pointed 
cone, to extremely broad, for the case of the sphere. 

The difference in pulse width is associated with 
the differing behavior of f ( h ) c ~ 6 - ~  as the size h 
goes to zero. For the pointed cone, the value of 
the ballistic parameter 6 approaches a finite limit, 
while for the sphere, 6 becomes infinite with vanish- 
ing radius. 

Since all the pulses are actually of infinite 
breadth, the position of the peak G point does not 
actually mark the end of the high-mass-loss 
regions. Figure 5(d) indicates the deceleration to 
be essentially complete within about a scale height 
of the peak G point for the pointed cone and within 
about two scale heights for the cylinder. The 
decay of the G pulse is so much slower for the case 
of the shrinking sphere t,hat no values of decay 
length or limiting size will be given for the sphere. 
Use of the decay lengths for the cone arid cylinder 
in conjunvtion with figure 4(d) indicates a liniit of 
L=7 feet for the pointed cone and L - 2 . 5  feet for 
the cylinder. The corresponding probe weights for 
w=140 lb/cu ft and D/L=0.3 are 2x10~ pounds 
for tlie pointed cone and 3)(10? pounds for the 
cylinder. Increase of the diameter does not affect 
the position of the high-mass-loss region in the 
case of the cylinder. 

The no-loss curve of figure 5 is taken from 
reference 5 .  It may be noted that low-mass-loss 
entry leads to a G pulse that is broad coriipared 
with that experienced in the high-mass-loss entry 
of cylinders and pointed cones. Only the high- 
mass-loss sphere has a broader G pulse. 

The increase of pulse breadth with increasing p 
indicated by figure 5 is associated with the in- 
crease of inertia of the payload with p. In  analyt- 
ical terms, the value of , f (h )  is lowcred at every h 
value by increase of p. 

The values of peak G are indicated in figure 6 
for a range of values of AM’/v, the eflective heat 
capacity. The peak G value (and all other G 
values a t  a given value of h) is proportional to the 
quantity Aa’/v.  Ihiiiting velocity is thus uti- 
bounded for unliniited increase in effective heat 
capacity tis well as for v2inishing p. Howver,  the 
position of the high-iiiass-loss region does not 
shift with AW/v, but rather with size L, as already 
shown in figure 4. Although the pointed cone 
with D/L=O.3 has only a slightly higher limiting 
velocity than the cylinder, it is subject to consider- 
ably higher loadings. These higher loadings are 
associated with the absence of high T‘,A values un- 
til late in the trajectory for the case of the pointed cone. 
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~. 

1 1.011 
1 1. 013 

e-1 1 1. 015 
1 1. 017 

Although the limiting velocity of the pointed 
cone tends to increase with cone angle, the limiting 
velocity is bounded, in the present analysis, even 

indicated in the following table for several values of 1.1. 

for the case of the infinitely shallow cone. The 
values of the limiting velocity of the pointed cone, 
in units of the limiting velocity of a cylinder, are 

- _ _  - - 

1. 042 1. 124 1. 259 1. 412 
1. 051 1. 152 1. 316 1.497 
1. 058 1. 170 1. 352 1. 550 
1.062 1. 188 1.384 1. 598 

I 

When p<+ the limiting velocity of the zero- 
length cone (D/L=a)  is less than 60 percent 
greater than that of the cylinder. The slender 
pointed cone with D/L=O.3 (cone half-angle of 
8.5') has a limiting velocity less than 2 percent 
higher than that of the cylinder when p<+. For 
other cones slender enough to permit neglect of the 
heat input to the flanks, similar small gains are 
indicated. 

DISCUSSION OF ANALYSIS 

The case of meteorlike bodies appears in the 
present analysis as the limiting case of vanishing 
payloads p+o .  In  this limit, for all three kinds of 
bodies considered (blunted cones, cylinders, and 
shrinking spheres) the limiting velocity becomes 
infinite. I n  fact, for all heat-input functions cor- 
responding to r 2 1 and s 2 3, it can be shown that 
the limiting velocity becomes i n h i t e  as ~ 4 0 .  
To obtain finite values of limiting velocity a t  
p=O, a value of X,+>O must be used as the de- 
fmiig value. 

A convenient way of considering the heat inputs 
for atmospheric entry is in terms of the initial 
ldnetic energy of the body. For entries at  limiting 
velocity the heat capacity of the body H,- 
divided by the initial kinetic energy of the body 
T,- at limiting velocity indicates the fraction of 
the initial lunetic energy of the body returned to 
the body as heat under the most extreme condi- 
tions of survival. For flat-faced cylinders, which 
yielded values of limiting velocity that are high 
for the class of probes considered in the present 

J 

analysis, the ratio is found to be 

Again, there is singular behavior for the case of 
p=O, which corresponds to meteorlike bodies. The 
ratio H,-/T,- can be made arbitrarily small for 
small enough values of p. The singular behavior 
of limiting velocity as the payload vanishes empha- 
sizes the distinction between the cases of meteor 
and probe entry. Equation (l la) may be inter- 
preted as indicating effective values of q or of 
Aw/q. The effective values of q are approxi- 
mated by 

in the case of high mass loss, and by 

(1lc) 
H ,  - 
T, - q=2- (P = 1) 

for the case of low mass loss. 
tive values of AW/q are given by 

Alternatively, effec- 

AM7 1 u:- -=- __ 
11 1 2a, 

log, - 
P2 

which becomes, for low mass loss, 
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According to the analysis there is no effect of 
size on limiting velocity, a t  least for the limiting 
form of the heat function. The only effect of 
increasing size is a lower altitude for the high-mass- 
loss region. On a limiting trajectory all the 
volume must be consumed, in the present model, 
and when more volume is provided a longer path 
is required for complete consumption when the 
initial velocity is the same in every case. 

Although the anticipated advantage of the 
slender probe is borne out by the fact that pointed 
cones yield the highest limiting velocity, a physical 
interpretation must be made carefully. The 
neglect of heat input to the flanks causes the 
analysis to show an advantage for the largest flank 
area, which occurs on the pointed cone. Among 
pointed cones, those with the steepest flanks 
(u+m ), and consequently the highest fli~nk drag, 
have highest limiting velocity. This result follows 

from the fact that '-$$LO in the interval 0 5 h 5 1. 

Obviously the flank input cannot be neglected 
on such shallow cones. For initially pointed cones 
which are so slender that the flank input is small 
compared with the face input, the limiting velocity 
is not much higher than that of flat-faced cylinders. 
It can be shown by integmtion of the proper 
f(h) that another shape with the same limiting 
velocity as a flat-faced cylinder is a pointed cone 
traveling base foremost. 

Insofar as shape is concerned, the key reyuire- 
ment for high limiting velocity is a high value of 
the integral 

& 

0 

or, in other words, a high value of the mean re- 
ciprocal of the ballistic parameter with respect to 
t,he changing size of the vehicle. This may be 
more clearly seen, perhaps, if the ratio of equation 
(lg) to equation (50) is taken, with the result 

L 

or 

which shows in  a differential form the advantage 
of small 6. 

CONCLUDING REMARKS 

The analysis has shown that, for a limiting heat- 
input function and a simple probe model, there 
is no limit to the size of probe that may survive 
entry to the earth's atmosphere except that  
imposed by the finite depth of the atmosphere. 
I n  the absence of a payload there was found to be 
no limit to the possible entry speed. This zero- 
payload case corresponds to that of meteor entry. 
For finite payload fractions, entry speeds consid- 
erably in excess of the launch speed for solar- 
system escape were found to be possible. 

The form of probe for highest entry speed was 
expected to be slender. This expectation was 
borne out when the analysis indicated that slender 
pointed cones have the highest value of limiting 
speed for the class of probes considered. How- 
ever, the entry speed for cylinders was nearly as 
high and was independent of the cylinder pro- 
portions, so that wafers and rods have the same 
values. The indicated slight advantage of the 
slender cone was thought to come, in part a t  least, 
from the form of the analytical model and not 
from any real physical advantage. In sum, for 
the extreme case of high-inass-loss entries there 
is, in the present analysis, no clear indication of 
desirable proportions. The fact that high entry 
speeds were found for the cylindrical probes 
suggests that the blunt body indicated for low- 
mass-loss entries in which convective heat transfer 
is dominant may again be suitable in the extreme 
case of high-mass-loss entries in which radiative 
heat transfer is dominant. 

LANGLEY RESEARCH CENTER, 
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 

LANGLEY STATION, HAMPTON, VA., November 29, 1962. 



APPENDIX 
FUNCTIONAL RELATIONS, SCALING LAWS, AND ESTIMATES OF FLANK HEAT INPUTS 

As mentioned in the discussion of the heating 
function g(X) , the experimental variation of 
radiative heating obtained from reference 4, 
which indicates values of r=2 and s=14, leads to 
excessive values of radiative heating a t  the 
densities and speeds of steep high-mass-loss entries 
for practical probe sizes. However, the analysis 
holds for other values of r and s as long as the 
stagnation-point heating rate is proportional to 
the size of the face. The trajectory properties 
corresponding to g(X) =K(1 -X) thus may have 
some future interest.. Under a p-z shift the 
following functional relations are found by use 
of equations (3d) and (7b): 

so that, specifically, 

b log u r _- 
b l o g L -  8-1 

blog G 2r 
a log L= -s--i 

For limiting velocities there is thus a size effect 
favoring smaller sizes (which might be expected 
since the heating per unit area is proportional to 
size) on the assumed heat-input function. 

The formulas (AI) and (A2) derived for the 
function g(h)=K(I-h) apply for the function 
g(X)=Kf if in the exponent of L the quantity r is 
replaced by T -  1. The corresponding functional 
relations on a p-z shift for the case of g(X)=K’ 
may thus be written immediately as 

and 
b logU-  r-1 
b g L - - s - - l  

b lop G- ~(T- I )  
~~ -~ 
b log L - s-1 

For the liiniting heat function g(X)=K’ the asso- 
ciated esponents are r = l  and s=3; therefore 
relations (A7) and (A8) indicate the absence of a 
size effect on limiting velocity. This is consistent 
with the fact that the assumed heat input per 
unit area for g(X) = K‘ is independent of size. 

Independently of the assumed heat function, 
for the blunted cones and the cylinders, the posi- 
tion of the high-mass-loss region moves on a p-z 
shift according to the condition 

4 

0 

aohs’ 
p - WL -=Constant 

or 
b w  

W L  =l  a log, __ 
a A ’  

The effect of an increase in size is to put the high- 
mass-loss region a t  lower altitudes. Changes in 
w, up, and h,‘ are equivalent to size changes, the 
direction of the equivalent change being indicated 
by equation (A10). 

In  the direction of smaller sizes, the effect of 
convection will become relatively more important 
since the ratio of convective heating rate to radi- 
ative heating rate increases as p-’l2 for the limiting 
form of the heat function and a t  a higher rate for 
the esperiinental variation of reference 4. If the 
convect,ive input to the face is regarded as a per- 
turbation and evaluated a t  every point of a tra- 
jectory established under radiation dominance, 
the limits of radiation dominance may be found. 
The convective heating rate to the face is 

16 
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The integrated convective input to the face of the blunted cones is thus 

The ratio of convective to radiative inputs for limiting trajectories is found to be 

since, for limiting trajectories, Qr is the heat ca- 
pacity of the probe volume. 

When the ratio Q J Q r  is evaluated for one limit- 
ing trajectory, it can be scaled to all other values 
of L by applying the pz=Constant change which 

w yields the following scaling laws for the case of 
g(X) =K( 1 - X) : 

(-414) 

(A151 
?log Qc 3 (n- 1) r -2+m-- b lo--- s-1 

and for the case of g(X)=K': 

Q b log 2 
Qr 3 (n- 1) (r-  1) 

(A191 b logL-  2 f m -  s-1 

For the calculations made with the limiting heat 
function g(X) =K', the associated exponents are 
~ = l  and s=3 so that the last members of equa- 
tions (AIS) and (A19) vanish. By use of either 
equation (A16) or (A19) and the value of Qc/Qr  

for a single trajectory the value of L a t  which 
Qc= Qr may be found. With a limiting trajectory 
for g(X)=K', a blunted cone of L=8 feet, and 
X,-=0.70, the ratio Qc/Ql.  is found to be 3X10-3. 
After extrapolation to unit ratio by use of equa- 
tion (A19) the corresponding value of L is 3 X 
feet. This length is small enough to be out of the 
range of conceivable probe sizes and, in fact, beyond 

the scope of the analysis. 
For the cylindrical shapes on the heating func- 

tion g(X)=K(l-X) there is an indicated choice of 
proportions which does not appear on the limiting 
function g(X)=K'. If a given amount of heat- 
protection material is considered, a volume con- 
straint of the form 

D2L= Cons tan t (A201 
is implied. If L is regarded as variable a t  constant 

volume, and it is recalled that - K-- for 

g(X)=K(1-h), a p-z change results in 

dX D 
dw L 

3 

~ ~ - 5  U;-l=Constant (A211 

When r>3/2,  i t  is found that U1-- for L-0 
and the cylinder becomes an infinitely thin wafer 
of infinite diameter. When r<3 /2 ,  Ul-m for 
L -  and the cylinder becomes an infinitely long 
needle of zero diameter. The high-mass-loss 
regions for the two cases are a t  u = - m  for the 
wafer and at w = w  for the rod. For the limiting 
function g(X) =K', the limiting velocity was shown 
to be independent of the proportions. 

The relative heat inputs to the face and to the 
flanks of the truncated cones can be roughly esti- 
mated. If, in the case of convection, the flank 
input is considered to be the same a t  each axial 
station as that to a swept cylinder with the same 
radius as the local cone radius, and the loss of 
material on the flanks is neglected, it turns out that 

so that the flank input can be greater than, but 
remains comparable to, the face input. The 
regime of radiation dominance on the face thus 
implies dominance on the vehicle. 
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Let the radiative input to the flanks be put on 
the same basis as that to the face. That is, let 
the fraction q of the kinetic energy of the impinging 
flow which is due to the component of free-stream 
velocity normal to the surface be converted into 
heat on the flanks. It is found, after integmtion, (A23). 

that 

( & f ) l l u r i h 8 < l  (Qr)fUce 2 (E)Z L (A231 

For DIL 5 0.3 the flanli input is less than 5 percent 
of the radiative face input according to relation 
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